
13.3, Part One) Arc Length

1. Review of concepts from Calculus I, especially the differentials of x and y

Suppose we have a function y  fx. Let a be a particular value of x. The corresponding
value of y is fa, and the point a, fa lies on the graph of the function; call this point P. Let
L be the tangent line to the graph of the function at the point P. In Calculus I, we learned
how the tangent line is obtained by applying the concept of the limit. Let b be a value of x
nearby a. The corresponding value of y is fb, and the point b, fb lies on the graph of
the function; call this point Q. The line passing through the points P and Q is known as a
secant line (the word secant means “to cut,” and the line cuts through the graph of the
function at the points P and Q. If we let b approach a, then the point Q approaches the
point P, and the secant line adjusts accordingly. The closer b comes to a, the closer Q
comes to P, and the closer the secant line comes to the tangent line. We say that the
tangent line is the limiting position of the secant line as b approaches a. In other words, the
limit of the secant line as b approaches a is the tangent line.

Likewise, the slope of the tangent line is the limit of the slope of the secant line as b
approaches a. The slope of the secant line is fb  fa

ba , so the slope of the tangent line is

limba
fb  fa

ba .

Let x  b  a. So b  a  x. The slope of the secant line may be expressed as
fax  fa

x . When b approaches a, x approaches zero. Hence the slope of the tangent

line may be expressed as limx0
fax  fa

x . Of course, this is the derivative of the function
at x  a, i.e., fa.

The derivative of the function may be expressed in Leibniz notation as dy
dx

. On the one
hand, this is merely a synonym for fx. On the other hand, we may think of it as the literal
quotient of two quantities, dy and dx, which are known as differentials (they are referred to
as the differential of y and the differential of x, respectively). These quantities have a
very meaningful geometric interpretation. In the context of the above discussion, where we
are examining the tangent line at the point a, fa, the differentials would be interpreted as
follows...

dx represents a nonzero deviation of x from a. dx may be positive or negative. Positive dx
means deviation to the right of a, which gives us an x value greater than a. Negative dx
means deviation to the left of a, which gives us an x value less than a. In either case, the
value of x we obtain from this deviation is expressed as a  dx.

Now think of the tangent line as the graph of a linear function, Lx, known as the
linearization of f at x  a. The point P lies on the graph of Lx, so La  fa. Since the
tangent line passes through the point a, fa and has slope fa, we may use the
point-slope formula to write its equation, giving us y  fa  fax  a, or
y  fax  a  fa. Consequently, Lx  fax  a  fa.
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When x  a  dx, the value of the linearization is
La  dx  faa  dx  a  fa  fadx  fa.

When x varies from a to a  dx, Lx varies from La to La  dx, and hence the change in
Lx is La  dx  La, which equals fadx  fa  fa, which simplifies to fadx. This is
precisely the meaning of dy. In other words, by definition, dy  fadx, i.e., dy means the
change in Lx when x varies from a by the amount dx. Since dx is nonzero, we may divide
both sides of this equation by dx, giving us dy

dx
 fa.

dy can be positive or negative of zero. Positive dy means that the value of La  dx is
greater than La. Negative dy means that the value of La  dx is less than La. Zero dy
means that the value of La  dx is equal than La. The third case occurs when the
tangent line is horizontal. The first and second cases occur when the tangent line is oblique
(i.e., either slanting up or down). To be more specific, the first case, positive dy, occurs
either when the tangent line slants upward and dx is positive, or when the tangent line slants
downward and dx is negative. The second case, negative dy, occurs either when the
tangent line slants upward and dx is negative, or when the tangent line slants downward and
dx is positive.

When x varies from a to a  dx, fx varies from fa to fa  dx, and hence the change in
fx is fa  dx  fa, which we denote f.

The purpose of dy is to approximate f. This is an extension of the idea that the function
Lx is an approximation of the function fx.

When dx is small, these approximations, i.e., dy  f and Lx  fx, are quite good.

For example, let fx  x2 and let a  3. The tangent line has slope 6, so Lx  6x  9. Let
dx  0.07, so a  dx  2.93. f3  9, and f2.93  8.5849, so f  0.4151. In
comparison, dy  60.07  0.42. Note that L2.93  8.58, which is very close to
f2.93.

Most mathematical concepts have more than one purpose or use, so when I say “the
purpose of dy, ” what I mean is its most basic purpose. It certainly has other uses!

2. The Differential of Arc Length, ds

Suppose dy is nonzero (which means our tangent line is either upward sloping or downward
sloping, not horizontal). Let M be the point a  dx,La  dx, which lies on the graph of
Lx. As before, let P be the point a, fa, which also lies on the graph of Lx. The line
segment PM is neither horizontal nor vertical. Let us construct a right triangle with this line
segment as its hypotenuse. Let N be the point a  dx, fa (in other words, N is the point
that aligns vertically with M and horizontally with P. So triangle MNP is a right triangle
whose right angle is MNP. The hypotenuse is PM, the horizontal leg is PN, and the
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vertical leg is MN.

The length of the horizontal leg is |dx|, and the length of the vertical leg is |dy|. (We must
use absolute values because length must be positive, whereas each differential could
possibly be negative.)

By the Pythagorean Theorem, the length of the hypotenuse is dx2  dy2 . We define this

as a new differential, ds. In other words, by definition, ds  dx2  dy2 . Note that
dx2  dy2  ds2. For reasons to be made clear shortly, ds is known as the differential of
arc length.

Whereas dx and dy have the potential of being negative, ds cannot be negative, since it is
defined as a principal square root, which is never negative.

By definition, dx cannot be zero, but dy can be zero (this occurs when the tangent line is
horizontal). Our discussion of the right triangle MNP was predicated on the assumption that
dy was not zero. However, our algebraic definition of ds makes perfectly good sense even
when dy is zero. When dy  0, we have ds  dx2  02  dx2  |dx|.

Since dx cannot be zero, ds must always be positive.

So far, we have given the definition of ds, and discussed its geometric interpretation when
dy is nonzero. Now let’s discuss the purpose of ds.

Recall that dy  f  fa  dx  fa. Let K be the point a  dx, fa  dx, which lies on the
graph of fx. K aligns vertically with M.

The graph of fx is a curve. When we restrict x to the closed interval a,a  dx (when dx is
positive) or a  dx,a (when dx is negative), we obtain an arc of the curve having endpoints
P and K. The measurement of this arc is known as its arc length, and may be denoted
arclengthP,K.

When dx is small, M lies close to K, so arclengthP,K is closely approximated by the length
of the line segment PM, which is precisely ds. So ds  arclengthP,K.

For example, consider the function fx  25  x2 , which has domain 5,5. The graph of
this function is the top half of a circle with radius five centered at the origin. Let a  4, so
fa  f4  3 and P is the point 4,3. fx  x25  x21/2, so fa   4

3 , and
Lx   4

3 x 
25
3 . Let dx  1, so a  dx  3, fa  dx  f3  4, and K is the point 3,4.

La  dx  L3  13
3 , so M is the point 3, 13

3  or 3,4 1
3 .

For the moment, let’s leave calculus aside, and just use trigonometry. The points P and K
lie on the circle centered at the origin, which we will refer to as the point O. So the radian
measure of POK is arctan 4

3  arctan 3
4  0.284. Therefore arclengthP,K  1.42 (the

length of an arc of a circle is equal to the radius multiplied by the radian measure of the
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subtended angle, and 5  0.284  1.42. On the other hand, we can compute the length of
line segment PM using the distance formula; we get 4  32  4 1

3  32  1.25.

Now let’s bring back our calculus. Since dx  1, dy  fa   3
4 , so

ds  12   3
4 2  25

16  5
4  1.25.

In this example, the differential of arc length gave us 1.25 as an approximation to the true
arc length, 1.42. It wasn’t a very accurate approximation. That’s because we were using a
relatively large dx, namely, 1. We chose this value to allow for simple calculations. In
reality, to obtain a good approximation of arc length, we would use a smaller dx, such as
0.1 or 0.01.

In the above example, we were able to compute the true arc length using trigonometry,
since we were dealing with an arc of a circle. Usually we can’t do this, because usually we
are dealing with noncircular curves.

3. Dealing with ds in the case of a parametrically defined curve

Suppose we have a curve defined by the parametric equations x  xt, y  yt. So
dx
dt
 xt and dy

dt
 yt. Therefore dx  xtdt and dy  ytdt.

By substitution, ds  dx2  dy2  xtdt2  ytdt2  xt2dt2  yt2dt2 

xt2  yt2dt2  xt2  yt2 dt2  xt2  yt2 |dt|

Since t represents time, and we generally think of time as moving forward, it is reasonable
to adopt the convention that dt is always positive. Thus, we may drop the absolute value,
which gives us the equation ds  xt2  yt2 dt.

Let’s pause to think about what dt represents. Suppose  is a value of t such that x  a.
Just as dx represents the deviation of x from a, likewise dt represents the deviation of t from
. Although dt is necessarily positive, dx could be negative, because a particle moving
along a curve could be moving leftward as time goes forward.

When we have y  fx with no parameterization involved, x is the independent variable and
y is the dependent variable (depending on x. Under these circumstances, dx is likewise an
independent variable, and dy is a dependent variable (when the point of tangency has been
specified, dy is a function of dx. Once we have introduced a parameterization, so that
x  xt and y  yt, we now have the parameter t as our independent variable, and now x
and y are both dependent variables (depending on t. Under these circumstances, dt is
likewise an independent variable, and dx and dy are both dependent variables (when the
point of tangency has been specified–i.e., when t   has been specified–then dx and dy are
both functions of dt.
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Earlier, we discussed how dy serves as an approximation to f when we are dealing with a
function y  fx. We may write y in place of x. Thus, dy serves as an approximation to
y.

Similarly, once we have introduced our parameterization of x and y as functions of t, then dx
serves as an approximation to x and dy serves as an approximation to y.

In our previous example, we considered the function fx  25  x2 , whose graph is the top
half of a circle. Let us now widen our viewpoint to consider the complete circle,
x2  y2  25. It may be parameterized as x  5cos t, y  5sin t, where t  0,2. Let
  arctan 3

4  0.644. x  4 and y  3, so our moving particle is located at the point
4,3 when t  .

Let   arctan 4
3  0.927. x  3 and y  4, so our moving particle is located at the

point 3,4 when t  .

When time moves forward from  to , we have dt      0.283. x  3  4  1, and
y  4  3  1. (We have negative x and positive y because the particle has moved
leftward and upward.) Since xt  5sin t and yt  5cos t, x  5 3

5   3 and
y  5 4

5   4, so dx  3dt and dy  4dt. Evaluating these when dt  0.283, we get
dx  0.849 and dy  1.132. These are reasonably good approximations to x and y. We
would, of course, get better approximations if we used a smaller dt.

Before we go on, let’s just take a moment to verify that the equation ds  xt2  yt2 dt
gives us a correct result in the above situation. Since xt  5sin t and yt  5cos t, we
get 5sin t2  5cos t2 dt  25sin2t  25cos2t dt  5dt. Substituting dt    , we get
ds  5    50.283  1.415, which is very close to the true arc length, 1.42.

Notice that in this analysis, we obtained a different (and far more accurate!) value of ds than
we did earlier, before we introduced our parameterization. Earlier, we had chosen dx to be
1, which is a fairly large value, and this gave us a relatively poor estimation of the arc
length. This time, our independent variable was dt, and we chose it to be     0.283,
which is a fairly small value, and this gave us a much better estimation of the arc length.

If motion along the curve is represented by the position function rt   xt,yt , then the
velocity is vt   xt,yt  and the speed is vt  |vt|  xt2  yt2 . Thus,
ds  vtdt.

4. Finding the exact value of arc length

As we have discussed, ds gives us an approximation to arc length. But how can we find the
exact measure of arc length? In the above example, we were able to find the exact value
using trigonometry, because we were dealing with an arc of a circle. But what if we are
dealing with a curve that is not a circle?
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The answer is quite simple, provided the curve is defined parametrically–i.e., x  xt and
y  yt.

Let  and  be two values of t, with   , and let P and K be the corresponding points on
the curve–i.e., P  x,y and K  x,y. As time moves forward from  to , our
particle moves along the curve from P to K.

The equation ds  xt2  yt2 dt or ds  vtdt gives us ds in terms of t and dt. To find
arclengthP,K, we simply integrate ds over the interval ,. In other words,

arclengthP,K  




ds  




xt2  yt2 dt  




vtdt.

For example, consider the parabola y  x2. Suppose we want to find the length of the arc
of this parabola from the point 0,0 to the point 3,9. We adopt the parameterization x  t,
y  t2. t  0 gives us the point 0,0 and t  3 gives us the point 3,9.

xt  1 and yt  2t, so ds  1  4t2 dt. Consequently, the arclength is 
0

3

1  4t2 dt. To

evaluate this integral, we use trigonometric substitution followed by integration by parts. We

obtain 1
4 ln 2t  1  4t2  1

2 t 1  4t2
0

3
 1

4 ln6  37   3
2 37 .

Evaluating on a calculator, we get 9.747.

We could have estimated this by computing ds, using t  0 and dt  3. Then ds  3. This
is a terrible estimate! But that shouldn’t be surprising, since 3 is a huge value for dt.

5. The Arc Length Function

The formula 




xt2  yt2 dt or 




vtdt expresses arc length as a definite integral. As we

know, the variable of integration can be replaced with a “dummy variable” and it does not

alter the result, so we could also write this integral as 




xu2  yu2 du or 




vudu.

Say we have a curve defined parametrically by the equations x  xt, y  yt, and we have
a point P corresponding to t  , i.e., P  x,y. For any value of t  , let Kt be the
corresponding point on the curve, i.e., Kt  xt,yt. Then the length of the arc of the
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curve from P to Kt is given by the definite integral 


t

xu2  yu2 du or 


t

vudu. When t is

allowed to vary (while  is held fixed), this integral gives us a function of t, which we denote
st and which we name the arc length function. Its domain is ,, assuming the curve
is defined for all t  .

Thus, st  


t

xu2  yu2 du  


t

vudu

st  d
dt
st  d

dt 


t

vudu  vt, using the Fundamental Theorem of Calculus.

Consequently, the rate of change of the arc length function with respect to time is equal to
the speed of motion.

If we write st in Leibniz notation, we have ds
dt
 xt2  yt2 . Multiplying both sides of

the equation by dt gives us the equation ds  xt2  yt2 dt, which is the same result we
obtained earlier.

In the case of motion along the parabola y  x2, using the parameterization x  t, y  t2 and

letting   0, we obtain the arc length function st  
0

t

1  4u2 du 

1
4 ln 2u  1  4u2  1

2 u 1  4u2

0

t
 1

4 ln 2t  1  4t2  1
2 t 1  4t2 .

If we wish to find the length of the arc of this parabola from the point 0,0 to the point 1,1,
we simply calculate s1, which is 1

4 ln 2  5  1
2 5 , or about 1.479.

Let us return to the example the x  5cos t, y  5sin t. We shall now allow t to vary over the
interval 0,. As it does so, our particle starts at the point 5,0 and then movies
counterclockwise around the circle x2  y2  25 infinitely many times. (It completes its first
cycle when t  2, its second cycle when t  4, and so on.) The particle is moving with a
constant speed that is equal to the radius, i.e., vt  5. At any time t  0, the distance our

particle has travelled since t  0 is given by the arc length function st  
0

t

5du  5t. For

instance, when t  2, the particle has travelled a distance of 10, which is the
circumference of the circle. When t  6, the particle has travelled a distance of 30, which
is three times the circumference; this makes sense, because at this point in time the particle
has just completed its third cycle.
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If we used the parameterization x  5cos 
30 t, y  5sin 

30 t, the speed of the particle

would now be 
6 , so st  

0

t


6 du 


6 t. With this parameterization, the particle completes

one cycle every 60 seconds (or one minute), so s60  10, which is the circumference;
s15  2.5, which is one quarter the circumference (travelled in one quarter of a minute);
and so on.

6. The Arc Length Parameter

Recall that there are many ways to parameterize a given curve. Let s be the arc length
along a curve from a designated starting point P. Instead of parameterizing the curve with
respect to t and then thinking of s as a function of t, as we did above, we could simply treat s
as an independent parameter in its own right. We refer to it as the arc length parameter.
We may then parameterize the curve with respect to the parameter s. In other words, we
may write the parametric equations x  xs, y  ys.

Consider the example x  5cos t, y  5sin t. Since s  5t, we obtain t  1
5 s, so the

parameterization with respect to arc length is x  5cos 1
5 s, y  5sin 1

5 s.

On the other hand, with x  5cos 
30 t, y  5sin 

30 t, we have s  
6 t, so we obtain t  6

 s.
Since 

30 t 

30

6
 s 

1
5 s, so we get the parameterization 5cos 1

5 s, y  5sin 1
5 s.

Note that regardless of which parameterization we started with, we obtained the same
parameterization with respect to arc length. Whereas there are infinitely many ways to
parameterize a curve with respect to time t, there is a unique way of parameterizing the
curve with respect to arc length s (assuming we have settled upon a starting point and a
forward direction for the curve). Thus, for any given curve, parameterization with respect to
arc length is the most “natural” or “objective” parameterization.

If vt  1 for all t, then st  


t

1du  u
t  t  . Thus, s  t  , and t  s  .

For instance, suppose the unit circle is parameterized as x  cos t, y  sin t. So vt  1.
 If we choose   0 as our starting point, then s  t, and the parameterization with

respect to arc length is x  cos s, y  sin s. When s  0, we are at the point 1,0.
 If we choose   

4 as our starting point, then s  t  
4 and t  s  

4 , so the
parameterization with respect to arc length is x  coss  

4 , y  sins  
4 . When

s  0, we are at the point  2
2 , 2

2 .
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7. Three-Dimensional Motion

The above discussion dealt with motion in two-dimensional space. All our results can easily
be adapted to three-dimensional space.

Suppose the motion of a particle is represented by the position function
rt   xt,yt, zt . The velocity is vt   xt,yt, zt  and the speed is
vt  |vt|  xt2  yt2  zt2 .

The differential of arc length is ds  dx2  dy2  dz2 , where dx  xtdt, dy  ytdt, and
dz  ztdt. Note that dx2  dy2  dz2  ds2.

Let  and  be two values of t, with   . Let P be the point x,y, z and let K be
the point x,y, z. As time moves forward from  to , our particle moves along
some curve from P to K. The distance it travels (in other words, the length of the arc of the

curve from P to K is 




ds  




xt2  yt2  zt2 dt  




vtdt.

Using P as our starting point, the arc length function is

st  


t

xu2  yu2  zu2 du  


t

vudu. Note that st  vt.

The parameterization x  xs, y  ys, z  zs is known as the parameterization with
respect to arc length.

If vt  1 for all t, then s  t  , and t  s  .

Consider the helix rt   2cos t, 2 sin t, 4t . vt   2sin t, 2cos t, 4 , so vt  2 5 for all

t. For   0, the arc length function is st  
0

t

2 5 du  2 5 t. Since t  5
10 s, the

parameterization with respect to arc length is rs   2cos 5
10 s, 2 sin 5

10 s, 2 5
5 s .
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